Раз AB - диаметр, то треугольник прямоугольный. Таким образом угол С = 90°. Теперь, если обозначить центр описанной окружности О, то треугольники OBC и OCA равнобедренные (с длиной равных бедер равных радиусу окружности). Рассмотрим OBC с известным углом при вершине О равным 68°. Очевидно, его углы при основании будут равны (180° - 68°)/2 = 112/2 = 56°. То есть один углов (угол CBA или B) в нашем исходном прямоугольном треугольнике равен 56°. А второй угол (при вершине A) будет равен 90° - 56° = 34°
снова свойство четырехугольника описанного возле окружности..
суммы противолежащих сторон равны.. так как нам известна ср.линия найдем боковую сторону..