1)∠А=50°, ∠В=х, ∠С=12х ∠А+∠В+∠С=180 50+х+12х=180 13х=130°, х=10° ∠В=10°, ∠С=120° 2) ∠С=90° , ∠В=35°, ∠А=90°-35°=55° ΔАСD, ∠D=90°, ∠ACD=35° 3) ΔABC, ∠A=∠B - 60°, ∠C=2*∠A, ∠A=x, ∠B=x+60, ∠C=2x x+(x+60)+2x=180 4x=180-60=120 x=120÷4 x=30 ∠A=30°, ∠B=30°+60°=90°, ∠C=30°*2=60° 4) Высота разбивает равнобедр. треугольник на 2 прямоугольных треугольника. Высота является в полученном треугольнике - катетом и она в 2 раза меньше боковой стороны т.е. гипотенузы, поэтому катет лежит против угла 30°. Значит углы при основании равнобедренного треугольника по 30°, а угол при вершине 180°-30°-30°=120° ответ: наибольший угол при вершине равнобедренного треугольника.
В треугольнике ABC DN - средняя линия по определению. Значит, по свойству средней линии ND параллельна AB.Отсюда следует параллельность ND и KB,так как KB = 1/2 AB. Имеем также, что ND = 1/2*AB = 1/2*10 = 5 (см). Так как по условию задачи точка K - середина отрезка AB, то KB = 1/2*10 = 5 (см). Аналогично рассуждая,доказываем, что КD - средняя линия треугольника ABC,что KD параллельна NB, что KD = 1/2*BC = 5 (см) и что BN = 5 см. Рассмотрим четырехугольник KBND. В нём ND параллельна KB и KD параллельна BN (по ранее доказанному). Также мы имеем, что NB = KD = 5 см и что KB = DN = 5 см. Значит, по определению данный четырехугольник - параллелограмм. А следуя из того, что NB = KD = KB = DN = 5 см, то получаем, что KBND - ромб. Найдем периметр данной фигуры. P = 5*4 = 20 (см). ответ: ромб; 20 см
∠А+∠В+∠С=180
50+х+12х=180
13х=130°, х=10°
∠В=10°, ∠С=120°
2) ∠С=90° , ∠В=35°, ∠А=90°-35°=55°
ΔАСD, ∠D=90°, ∠ACD=35°
3) ΔABC, ∠A=∠B - 60°, ∠C=2*∠A,
∠A=x, ∠B=x+60, ∠C=2x
x+(x+60)+2x=180
4x=180-60=120
x=120÷4
x=30
∠A=30°, ∠B=30°+60°=90°, ∠C=30°*2=60°
4) Высота разбивает равнобедр. треугольник на 2 прямоугольных треугольника. Высота является в полученном треугольнике - катетом и она в 2 раза меньше боковой стороны т.е. гипотенузы, поэтому катет лежит против угла 30°. Значит углы при основании равнобедренного треугольника по 30°,
а угол при вершине 180°-30°-30°=120°
ответ: наибольший угол при вершине равнобедренного треугольника.