Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
1) Возможно, тут и как-то по-другому нужно доказывать, но так тоже всё верно: , как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥ ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости: Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. ⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠ ЧТД
Можно по теореме о трёх перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной. Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠ ЧТД
1) 2
2) 1
3) 2
4) 1,5
Объяснение:
1) у любого треугольника сумма углов 180
проверяем:
1)30+40+90 = 160 ≠180
2)30+40+110 =180=180
3)30+50+110=190≠180
значит подходит только 2) 30,40,110
2)
если треугольник равнобедренный, то боковые стороны равны
1) 10см 1дм 8 см - равнобедренный
2) 10см 10дм 8см - данные величины не задают треугольник
3) 1 см 10дм 8 см аналогично 2)
3)
сумма углов в треугольнике равна 180 градусам, значит
180 -(45+18)=117
получили 1) 10см 1дм 8см
4) В прямоугольном треугольнике один угол равен 90 градусам остальные острые(<90) и в сумме даю 90 градусов
1) подходит
2) 27+35≠90, не подходит
3) не подходит сумма углов > 180
4) не подходит сумма углов < 180
5) подходит
6) не подходит сумма углов < 180