т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п
Всё
x = -5, y=8
2) AB = (-5-(-2),-8-4) = (-3,-12)
x = -3
3) AB = (2-(-5),3-(-7)) = (7,10)
y = 10
4) |MK| = sqrt(8^2+(-6)^2) = sqrt(64+36) = sqrt(100) = 10
5) MK = (-6-6,-3-2) = (-12,-5)
|MK| = sqrt((-12)^2 + (-5)^2) = sqrt(144+25) = sqrr(169) = 13
6) Xm = (0+8)/2 = 4
Ym = (-4+0)/2 = -2
7) Xk = (5-3)/2 = 1
8) AB = (2-(-3),3-3) = (5,0)
|AB| = sqrt(5^2+0^2) = sqrt(25) = 5
9) AB = (0-2,-5-(-3)) = (-2,-2)
|AB| = sqrt((-2)^2 + (-2)^2) = sqrt(8) = 2sqrt(2)
BC = (4-0,-1-(-5)) = (4,4)
|BC| = sqrt(4^2+4^2) = sqrt(32) = 4sqrt(2)
AC= (4-2,-1-(-3)) = (2,2)
|AC| = sqrt(2^2+2^2) = sqrt(8) = 2sqrt(2)
|BC| = |AB| + |AC|, значит,
А - лежит между B и C.
10) AO = (0-3,0-(-4)) = (-3,4)
|AO| = sqrt((-3)^2 + 4^2) = sqrt(25) = 5