ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
ав и cd - скрещивающиесярасстояние между скрещивающимися прямыми равно расстоянию от прямой до плоскости, в которой лежит другая прямая.пусть о – середина db1м – середина авом – это и есть расстояние между прямыми ав и db1δ aa1b1, ∠a1=90°по т. пифагораaв1 = √(aa1^2+a1b1^2)=√(2^2+2^2)=√(4+4)=√8=√(4*2)=2√2δ ab1d, ∠а=90°по т. пифагораb1d = √(ad^2+ab1^2)=√(2^2+(2√2)^2)=√(4+8)=√12=2√3b1d: 2=(2√3): 2=√3=doδ amd, ∠а=90°по т. пифагораmd = √(ad^2+am^2)=√(2^2+1^2)=√(4+1)=√5δ mod, ∠o=90°по т. пифагораbo = √(md^2 – od^2)=√((√5)^2+(√3)^2)=√(5+3)=√8=√(4*2)=2√2ответ: 2√2