Я рассмотрю треугольник у которого боковые есть :AB, BC Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b опустим медиану BH и предположим что она высота т.к. BH-медиана, то AH=HC=x т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы. тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана. в треугольнике BHC по теор. пифагора x^2=b^2-h^2 т.к. x^2=x^2 то a^2-h^2=b^2-h^2 откуда a^2=b^2 значит a=b что противоречит условию, следовательно медиана в таком трекгольнике не является высотой
Два круга пересекаются и у них общая хорда АВ. Один круг с центром О₁ и радиусом О₁А=О₁В=R₁. Второй круг с центром О₂ и радиусом О₂А=О₂В=R₂. Градусная мера дуги измеряется градусной мерой центрального угла. Значит <АО₁В=60° и <АО₂В=120°. Из ΔАО₁В по т.косинусов найдем АВ: АВ²=R₁²+R₁²-2R₁*R₁*cos 60=2R₁²-2R₁²*1/2=R₁² Аналогично из ΔАО₂В по т.косинусов найдем АВ: АВ²=R₂²+R₂²-2R₂*R₂*cos 120=2R₁²-2R₁²*(-1/2)=3R₂². Приравниваем R₁²=3R₂² Площадь первого круга S₁=πR₁²=π*3R₂² Площадь второго круга S₂=πR₂² Отношение площадей S₁/S₂=π*3R₂²/πR₂²=3/1 ответ: 3:1
Пусть в треугольнике ABC AB=a, BC=b. причем a не равно b
опустим медиану BH и предположим что она высота
т.к. BH-медиана, то AH=HC=x
т.к BH-высота, то треугольники ABH и BHC -прямоугольные, а боковые стороны ABC - их соответственные гипотенузы.
тогда по теореме пифагора для ABH, x^2=a^2-h^2, где h-высота и медиана.
в треугольнике BHC по теор. пифагора x^2=b^2-h^2
т.к. x^2=x^2
то
a^2-h^2=b^2-h^2
откуда
a^2=b^2
значит
a=b
что противоречит условию, следовательно медиана в таком трекгольнике не является высотой