Центр вписанной в угол окружности лежит на его биссектрисе. Окружность радиуса 8 - вневписанная, касается сторон двух углов - А и С, ее центр лежит на пересечении биссектрис этих углов, смежных с углами А и С ∆ АВС соответственно,⇒ СО - биссектриса и делит угол НСК пополам. . Центр окружности, вписанной в треугольник АВС, лежит в точке пересечения биссектрис. ВН и СО₁- биссектрисы. СО₁ делит угол ВСН пополам. АСК - развернутый угол и равен 180º Сумма половин углов АСН и ОСН равна половине развернутого угла. Угол ОСО₁=180°:2=90°⇒ ∆ ОСО₁ - прямоугольный с прямым углом С. АН - высота и медиана равнобедренного треугольника АВС, следовательно, делит основание АС на два равных отрезка: СН=АН=6. СН ⊥ АН⇒ является высотой треугольника ОСО₁.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой;⇒
ΔАВС: медиана АК (ВК=КС) и высота АН (<АКС прямой) делят угол А на три равные части: <CАН=<НАК=<КАВ Рассмотрим ΔАКС: - в нем АН - высота и биссектриса, значит этот треугольник равнобедренный (АК=АС). Тогда АН является и медианой (СН=КН=КС/2) Рассмотрим прямоугольный ΔАНВ: в нем АК является биссектрисой. По свойству биссектрисы АВ/ВК=АН/КН или АН/АВ=КН/ВК=КС/2КС=1/2 Т.к.. АН/АВ = sin B,sin B=1/2, значит <В=30° <НАВ=180-90-30=60° <НАК=<КАВ=<НАВ/2=60/2=30° <А=3*30°=90° <С=180-90-30=60° ответ: отношение 90°/30°=3
S=1/2(a+b) h
S=1/2(6*7)*12= 78(см)
ответ:78см