1) Точки А, В, С лежат на окружности с центром О (рис. 2), АОС=120°, дуги АВ : АС = 3 : 5. Найдите углы ΔАВС 2) Точка пересечения хорд АВ и СД делит СД на отрезки СМ = 4 см и МД = 6 см. На какие отрезки точка М делит хорду АВ = 11 см?
Из прямоугольного треугольника ABD AD^2=AB^2+BD^2=9+16=25 AD=5 Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12 AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1 Пусть BE высота в треугольнике ABD Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах. Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE Чтобы найти высоту BE выразим площадь треугольника ABD двумя площадь ABD = AB*BD/2 = AD*BE/2, отсюда BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна 2*площадь основания+площадь боковой поверхности площадь боковой поверхности = периметр основания умножить на высоту периметр основания = AB+BC+CD+AD=3+5+3+5=16 тогда площадь боковой поверхности 16*2,4=38,4 площадь полной поверхности 2*12+38,4=24+38,4=62,4
Так как внешний угол равен 120 градусов, то смежный с ним внутренний угол равен 30 градусов. Второй острый угол прямоугольного треугольника равен 90-30=60 градусов. По следствию из теоремы синусов, в треугольнике против большего угла лежит большая сторона. Значит, меньший катет треугольника лежит против угла в 30 градусов. Пусть меньший катет равен х см, тогда гипотенуза равна (х+15) см. По определению синуса острого угла прямоугольного треугольника, синус того угла, который равен 30 градусов, равен х/(х+15) (противолежащий катет разделить на гипотенузу), но мы знаем, что синус 30 градусов равен 1/2. Получаем уравнение x/(x+15)=1/2; 2x=x+15; x=15. Т.е. меньший катет равен 15 см, а гипотенуза равна 15+15=30 см.
Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4