Это задание невыполнимо, так
как такого треугольника не су
ществует.
Объяснение:
Если боковая сторона 9см, то
основание равнобедренного
треугольника:
Р-2×9=38-18=20(см)
Длины сторон треугольника:
Основание - 20 см
1 боковая сторона - 9 см
2 боковая сторона - 9 см.
Треугольник скществует, если
сумма длин любых двух сто
рон треугольника больше
длины третьей стороны.
Проверим это условие:
1) 9+9=18 (см) сумма двух
боковых сторон;
18см<20см условие не выпол
няется.
Сумма длин двух боковых
сторон меньше длины осно
вания.
Отет:
Такой треугольник не сущест
вует.
см²
Объяснение:
Дано (см. рисунок):
Параллелограмм ABCD
AB = 3 см
BC = 5 см
α = ∠BAE – острый угол параллелограмма
tgα = 2
Найти: площадь параллелограмма S.
Решение. Проведём высоту h = BE = DF параллелограмма и введём обозначение x = AE = CF. По определению
Отсюда
h = tgα·x = 2·x.
Так как треугольник ABE прямоугольный с гипотенузой AB, то можно применит теорему Пифагора:
AB² = AE² + BE² или 3² = x² + h² или 3² = x² + (2·x)².
Отсюда
5·x² = 9 или x = 3/√5.
Площадь параллелограмма определяется через сторону AD и высоту h по формуле:
S = AD·h.
Тогда
S = AD·h = 5·h = 5·2·x = 5·2·3/√5 = 6√5 см².