1) Пусть точка C - точка пересечения отрезков AB и MK.
Тогда по первому признаку равенства треугольников (две стороны и угол между ними) будут равными треугольники AKC и CBM.
А значит и углы тругольников AKС и СMB равны. Из этого следует, по теореме о параллельных прямых, так как накрест-лежащие углы (AKС и СMB) равны, то отрезки AK и MB параллельны.
2) См. рисунок.
Так как CH- биссектриса, то углы KCH и HCT равны между собой и равны половине угла KCP, т.е. 29°.
Так как CK и TH параллельны, то накрест-лежащие углы KCH и CHT равны, также 29°.
Угол CTH = 180 - HCT - CHT =180-29-29=122°.
Таким образом углы в треугольнике CHT: 29, 29, 122.
Значит АF=BE
Периметр треугольника АОF равен АО+ОF+АF.
Периметр треугольника ВОЕ равен ВО+ОЕ+ВЕ.
Но ВЕ=АF (равные стороны параллелограмма АВЕF).
ОЕ=ОF (так как треугольники АОF и СОЕ равны по двум углам и стороне
между ними: АО=ОС - половины диагонали АС, <OAF=<OCE - внутренние
накрест лежащие при параллельных ВС и АD и секущей АС,
<AOF=<EOC - вертикальные).
Значит разность периметров треугольников АОF и ВОЕ равна разности
АО и ВО.
АС+ВD=28см, значит АО+ВО=14см.
Итак, АО+ВО=14 см (сумма половин диагоналей)
АО-ВО=9.
Сложим два уравнения и получим: 2АО=23. Значит АС=23см.
Тогда ВD=5см.
ответ: Диагонали параллелограмма равны АС=23см, ВD=5см.