Объяснение:
Из условия нам известно, что один из острых углов прямоугольного треугольника равен 60°, а разность гипотенузы и меньшего катета равна 28 см.
Давайте прежде всего найдем третий угол прямоугольного треугольника, зная, что сумма углов треугольника равна 180°.
180° - 90° - 60° = 30° третий угол треугольника.
Известно, что катет лежащий напротив угла в 30° равен половине гипотенузы, а так же известно, что напротив меньшего угла прямоугольного треугольника лежит меньшая сторона.
Составим и решим уравнение.
Пусть меньший катет равен x, а гипотенуза равна 2x.
Исходя из условия:
2x - x = 28;
x = 28 см катет прямоугольного треугольника.
Ищем гипотенузу 2x = 2 * 28 = 56 см.
18√3см²
Объяснение:
Площадь трапеции исчисляется по формуле полусуммы оснований на высоту. Нам предстоит найти высоту и оба основания. Нам дан угол 120 градусов, как мы знаем, сумма углов трапеции( как и любого выпуклого 4-х угольника) равна 360 градусов, тогда угол при вершине С=120 градусов, а углы при основании равнобокой трапеции равны по 60( при вершинах А и Д), высота - перпендекуляр, т.е. углы опущенные к основанию равны 90 градусов(даже отмечено на рисунке). Тогда рассмотрим треугольник АВН В нем угол при вершине В 30, т.к. угол при А 60. Из теоремы Пифагора мы знаем, что катет лежащий напротив угла в 30 градусов равен половине гипотенузы, а гипотенуза у нас сторона АВ, значит АН =2, АD=AH+HD=2+9=11 AH=PD=2, значит HF=BC=AD-AH-PD=AD-2AH=11-4=7, BC=7,AD=11 . мы нашли оба основания, а значит осталось найти высоту. Воспользуемся теоремой Пифагора
BH=√AB²-AH²=√4²-2²=√16-4=√12=2√3
Осталось подставить в формулу
S=1/2*(AD+BC)*BH=1/2*(7+11)*2√3=18√3