Около правильного n-угольника описана окружность и в него вписана окружность. Докажите, что разность квадратов диаметров этих окружностей равна квадрату стороны данного n-угольника
1) △BAO, △BCO равнобедренные (AE, EC являются одновременно медианами и высотами) => BA=OA, BC=OC OA=OB=OC (радиусы окружности) OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60) ∠ABC=∠ABO+∠OBC=120 ∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180) ∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC AH=AC/2 (в равнобедренном треугольнике высота является медианой) AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис. Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины. BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4 r= OH = BH*4/9 =4
Осталось только выяснить, сосуд имеет форму конуса вершиной вверх или вершиной вниз. V₀ = 1600 мл 1. Конус в классической ориентации - основание внизу, вершина вверху. Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2 Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k² Объёмы относятся как k³ Объём верхней пустой части сосуда составит V₁ = V₀*k³ = 1600/8 = 200 мл Объём жидкости, налитой до половины составит V₂ = V₀-V₁ = 1600-200 = 1400 мл 2. Конус перевёрнут - основание вверху, вершина смотрит вниз В этом случае заполнен только объём V₁ из пункта V₁ = 200 мл
OA=OB=OC (радиусы окружности)
OA=OB=OC=BA=BC => △BAO, △BCO равносторонние => ∠ABO=∠OBC=60 (в равностороннем треугольнике все углы равны 60)
∠ABC=∠ABO+∠OBC=120
∠ADC=180-∠ABC=60 (сумма противолежащих углов вписанного четырехугольника равна 180)
∠BAD=∠DCB=90 (вписанные углы, опирающиеся на диаметр)
2) BH=9; AC=24
AB=BC
AH=AC/2 (в равнобедренном треугольнике высота является медианой)
AB=√(AH^2+BH^2) = √(24^2/4 +9^2) =15
Центр вписанной в треугольник окружности - точка пересечения биссектрис.
Биссектрисы треугольника делятся точкой пересечения в отношении суммы прилежащих сторон к противолежащей, считая от вершины.
BO/OH =(AB+BC)/AC = 2AB/AC =30/24 =5/4
r= OH = BH*4/9 =4
R= AB*BC*AC/2*S = AB*BC/2*BH = 15^2/2*9 =12,5
Проверка:
r*R= AB*BC*AC/2(AB+BC+AC)
15*15*24/2(15+15+24) = 50 = 4*12,5