Объяснение:
площадь трапеции
площадь трапеции равна произведению полусуммы ее оснований на высоту:
s = ((ad + bc) / 2) · bh,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
доказательство.

рассмотрим трапецию abcd с основаниями ad и bc, высотой bh и площадью s.
докажем, что s = ((ad + bc) / 2) · bh.
диагональ bd разделяет трапецию на два треугольника abd и bcd, поэтому s = sabd + sbcd. примем отрезки ad и bh за основание и высоту треугольника abd, а отрезки bcи dh1 за основание и высоту треугольника bcd. тогда
sabc = ad · bh / 2, sbcd = bc · dh1.
так как dh1 = bh, то sbcd = bc · bh / 2.
таким образом,
s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством
Рассмотрим треугольник АВС: по теорему о сумме углов треугольника < В=180-(75+70)=35.
Рассмотрим треугольник СС1В: по найденному выше <В=35; т.к. СС1 - биссектриса <С (делит угол пополам), то <ВСС1=70/2=35. Получаем, что треугольник СС1В - равнобедренный с основанием ВС и боковыми сторонами СС1 и С1В, а значит ВС1=СС1=7.
ответ: 7 см.
Объяснение:
Рассмотрим треугольник АВС: по теорему о сумме углов треугольника < В=180-(75+70)=35.
Рассмотрим треугольник СС1В: по найденному выше <В=35; т.к. СС1 - биссектриса <С (делит угол пополам), то <ВСС1=70/2=35. Получаем, что треугольник СС1В - равнобедренный с основанием ВС и боковыми сторонами СС1 и С1В, а значит ВС1=СС1=7.
ответ: 7 см.
судя по СОВЕРШЕННО НЕПОНЯТНОМУ условию :)) точка N общая, и речь идет о касательных, проведенных из точки N к какой-то окружности. Причем К и М СКОРЕЕ ВСЕГО - точки касания двух разных касательных проведенных из N.
Так вот, угол между касательными из одной точки может быть любым. Это зависит от положения точки N относительно окружности. Это ответ на вопрос.
К примеру, если точка N очень далеко от окружности, и радиус окружности очень маленький, то угол между касательными будет очень маленьким.
Но центр окружности О всегда лежит на биссектрисе угла KNM, и радиусы, соединяющие центр О с точками касания, то есть OM и OK, перпендикулярны сторонам угла. Это свойство касательной. Сумма углов MNK и MOK равна 180 градусам.
Отрезок, соединяющий K и М всегда перпендикулярен ON, точки K и M симметричны относительно ON.
Ну, и всегда NK = NM.
Вроде это все, что можно рассказать только про касательные.
А есть еще свойства секущих : и совместные свойства касательных и секущих...