Площадь правильного шестиугольника, вписанного в окружность, равна сумме площадей шести правильных треугольников со сторонами, равными радиусу этой окружности. Тогда площадь одного треугольника равна D/6. По формуле эта площадь равна (√3/4)*a², где а=R. Следовательно, √3*R²/4=D/6 => R²=2D√3/9. R=√(2D√3)/3 По Пифагору квадрат диагонали вписанного квадрата равен (2R)²=2а², где а - сторона квадрата. а=2R/√2 = R√2, а площадь - S= а² =2R² . Подставим найденное значение R, тогда сторона вписанного квадрата: а=√(2D√3/9)*√2=√(4D√3)/3. площадь вписанного квадрата: S=a²= 4D√3/9.
Объяснение:
У ромба все стороны равны.
ΔMNP - равносторонний (все углы по 60°). Значит сторона ромба равна 30 см, а периметр Р=4*30=120 см.
***
2. Пусть меньшая сторона равна х см. Тогда большая будет х+5.
2(х+х+5)=66;
2х+5=33;
2х=28;
х=14 см - меньшая сторона.
х+5=14+5=19 см - большая сторона.
Проверим:
Р=2(14+19)=2*33=66 см. Все верно.
***
3. Диагонали прямоугольника в точке пересечения делятся пополам. АО=ОС=ОD=24/2=12 см.
РAOD=AO+OD+AD=12+12+16= 40 см.
***
4. Диагонали в ромбе являются и биссектрисами.
Если ∠ВАС=18°, то ∠А=18°*2=36°.
∠А=∠С=36°.
∠В=180°-(∠ВАС+∠ВСА)=180°-(18°+18°)=180°-36°=144°;
∠В=∠D=144°.
***
5. Пусть АК=4х. Тогда KD=2х.
4х+2х=12;
6х=12;
х=2;
АК=4*2=8 см;
KD=2*2=4 см.
∠ABK=∠KBC=180°/3=60° - ( равны смежному углу с углом В.)
Значит ΔАВК - равносторонний: АВ=ВК=AK=СD=4 см.
Р=2(АВ+ВС)=2(4+12) =2*16=32 см.