Рассмотрим треугольник АВС:
∠АВС = 90°, АС = 2АВ, значит ∠АСВ = 30° по свойству катета, лежащего напротив угла в 30°.
Тогда ∠ВАС = 90° - ∠АСВ = 90° - 30° = 60°, так как сумма острых углов прямоугольного треугольника равна 90°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам, значит
АО = ОВ, т.е. ΔАОВ равнобедренный и углы при основании равны:
∠ОАВ = ∠ОВА = 60°, тогда
∠АОВ = 180° - (∠ОАВ + ∠ОВА) = 180° - (60° + 60°) = 60°.
∠ВОС = 180° - ∠АОВ = 180° - 60° = 120° по свойству смежных углов.
1. РТ = 3,5 см
Объяснение:
1.
Из условия КМ - средняя линия трапеции ABCD
т.к. средняя линия в трапеции равна полусумме оснований то
КМ = (AD + BC)/2 = (8 + 2)/2 = 5 см
Теперь рассмотрим трапецию КМВС
РТ - средняя линия трапеции КМВС ( из условия)
значит
РТ = (КМ + ВС)/2 = (5 + 2)/2 = 7/2 = 3,5 см
2.
KL = EL - EK
т.к. EF - средняя линия трапеции ABCD
то EK - средняя линия ΔABC, а EL - средняя линия ΔABD
тогда
EK = a/2 и EL = b/2
KL = EL - EK подставляем
KL = b/2 - a/2 = (b-a)/2
KL = (b-a)/2
1) а) 86
Б) нет
В) нет
2)
А) 266