Смотри рисунок в файл. треуг. равнобедренный. по св-ву биссектрисы она делит сторону на отрезки , пропорциональные сторонам угла, биссектрисой которого она является, т.е. СМ/МВ=5/20=1/4 т.к. ВС=20, то СМ=4, МВ=16
по теореме косинусов имеем 20²+b²-2*20*b*cosα=16² 5²+b²-2*5*b*cosα=4² умножая 2-е на 4 и вычитая из 1-го 2-е получаем 3b²=108 b=6
смотри рисунок в файл. треуг. равнобедренный. по св-ву биссектрисы она делит сторону на отрезки , пропорциональные сторонам угла, биссектрисой которого она является, т.е. СМ/МВ=5/20=1/4 т.к. ВС=20, то СМ=4, МВ=16
по теореме косинусов имеем 20²+b²-2*20*b*cosα=16² 5²+b²-2*5*b*cosα=4² умножая 2-е на 4 и вычитая из 1-го 2-е получаем 3b²=108 b=6
Уравнение прямой бисснутрисы первой четверти будет иметь вид у = x. Уравнение окружности имеет вид (х - x1)² (y - y1)² = r², где x1, y1 - координаты центра, r - радиус окружности. Раз центр будет лежать на прямой y = x, а точка с координатами (2; 5) будет лежать на окружности, то координаты центра можно найти, подставив эти координаты в уравнение: (х - 2)² + (х - 5)² = 5 х² - 4х + 4 + х² - 10х + 25 - 5 = 0 2х² - 14х + 24 = 0 х² - 7х + 12 = 0 х1 + х2 = 7 х1•х2 = 12
х1 = 3 х2 = 4 Тогда уравнение окружности будет иметь вид (х - 3)² + (у - 4)² = 5 или (х - 4)² + (х - 3)² = 5.
треуг. равнобедренный.
по св-ву биссектрисы она делит сторону на отрезки , пропорциональные сторонам угла, биссектрисой которого она является, т.е.
СМ/МВ=5/20=1/4
т.к. ВС=20, то СМ=4, МВ=16
по теореме косинусов имеем
20²+b²-2*20*b*cosα=16²
5²+b²-2*5*b*cosα=4²
умножая 2-е на 4 и вычитая из 1-го 2-е получаем
3b²=108
b=6
смотри рисунок в файл.
треуг. равнобедренный.
по св-ву биссектрисы она делит сторону на отрезки , пропорциональные сторонам угла, биссектрисой которого она является, т.е.
СМ/МВ=5/20=1/4
т.к. ВС=20, то СМ=4, МВ=16
по теореме косинусов имеем
20²+b²-2*20*b*cosα=16²
5²+b²-2*5*b*cosα=4²
умножая 2-е на 4 и вычитая из 1-го 2-е получаем
3b²=108
b=6