Если рассмотреть площади треугольников АВС и BCD, то нетрудно заметить: S(ABC) = S(ABP) + S(BPC) S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые))) т.е. доказав равенство площадей треугольников АВС и ВСD, мы докажем требуемое треугольники АВС и ВСD имеют общую сторону... если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))), то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции))) значит и площади равны...
1. Опустим высоты ВН и СР.AD-BC=AH+PD.AB>AH (1) и CD>PD (2), ак гипотенузы прямоугольных треугольниковАВН и СDP. Сложив (1) и (2), имеем: АВ+CD>AH+PD.Что и требовалось доказать.2. В треугольниках HBD и PCA BD>HP+PD (1) и AC>HP+AH (2).Сложим (1) и (2): AC+BD>HP+PD+HP+AH, но НР=ВС и PD+HP+AH = AD.Тогда AC+BD>ВС+AD, что и требовалось доказать.3.AD-BC=AH+PD, но АН<AB, a PD<CD тогда тем более AD-BC<AB+СD.Что и требовалось доказать.4. Диагонали трапеции точкой их пересечения образуют два подобных треугольникаВОС и AOD с коэффициентом подобия k=BC/AD. Значит и диагонали точкой пересечения делятся в таком же отношении, а не пополам, что и требовалось доказать.
то нетрудно заметить:
S(ABC) = S(ABP) + S(BPC)
S(BCD) = S(CPD) + S(BPC) --- видим одинаковые слагаемые)))
т.е. доказав равенство площадей треугольников АВС и ВСD,
мы докажем требуемое
треугольники АВС и ВСD имеют общую сторону...
если в каждом из этих треугольников провести высоты к этой общей стороне (ВС))),
то эти высоты окажутся равными --- как отрезки параллельных прямых, заключенные между параллельными основаниями трапеции)))
значит и площади равны...