Для начала вспомним, что для расчета объема потребуется высота пирамиды. Мы можем найти ее по теореме Пифагора. Для этого нам потребуется длина диагонали, а точнее – ее половина. Тогда зная две из сторон прямоугольного треугольника, мы сможем найти высоту. Для начала находим диагональ: d^2=a^2+a^2 Подставим значения в формулу: d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b: h=sqrt{{d/2}^2+b^2} h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды: S=6^2=36{cm}^2 Подставим найденные значения в формулу расчета объема: V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле: S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна: S=4*S_bok + S_osn= 4*12 + 36=84
Билет 6: Луч — это множество точек прямой, которые расположены по одну сторону от данной точки. Угол - геомтрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Есть 4 вида угла: развёрнутый - обе стороны лежат на 1 прямой. Прямой - если угол = 90°, тупой = угол > 90*, острый = угол < 90*. В равнобедренном Δ, углы при основании =. Дано - ΔАВС - рвб АС - основание Док-во Прочертим биссектрису ВТ. ΔАВТ = ΔВТС 1) 1 общая сторона (ВТ) ⇒ΔАВТ=ΔВТС 2) АВ = ВС (по условию) (по 2 сторонам и улу междуними) 3) Угол В1 = ∠В2 ( ВТ - биссектриса) ЧТД Билет 7: Прямая называется секущей по отношению к прямым α и β если она пересекает их в 2-х точках. Углы: Накрест лежащие углы; Односторонние углы; Соответственные углы. Дальше надо строить. Билет 8: Определение равных фигур - равенство треугольников? Если да, напиши, я тебе вечером напишу также как и построение по трём сторонам Билет 10: Биссектриса - отрезок, выходящий из вершины угла и делящий этот угол пополам. В рвбΔ биссектриса проведённая к основанию является также медианой и высотой Сумма двух острых углов прямоугольного Δ = 90*. Док - во Сума углов Δ = 180*, а прямой угол = 90* ⇒ 180*-90* = 90* - сумма остальных двух углов. ЧТД
d^2=a^2+a^2
Подставим значения в формулу:
d^2=6^2+6^2=36+36=72 cm
Высоту h мы найдем с и ребра b:
h=sqrt{{d/2}^2+b^2}
h=sqrt{{{72}/2}^2+5^2}=sqrt{36+25}=sqrt{61}=7,8 cm
Теперь найдем площадь квадрата, который лежит в основании правильной пирамиды:
S=6^2=36{cm}^2
Подставим найденные значения в формулу расчета объема:
V={1/3}*36*7,8=14,6{cm}^3
Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{5^2-{{6^2}/4}}=3*sqrt 16}=12
Площадь всей пирамиды равна:
S=4*S_bok + S_osn= 4*12 + 36=84