Примем меньшую диагональ за х, и составим уравнение
х*(х+4):2=96
x^2+4x-192=0
Решив уравнение, и отбросив отрицательный корень( так как длина стороны не может быть отрицательна) мы получим длину меньшей диагонали. Она равна 12 см. Тогда большая диагональ равна 16 см.
Как известно, диагонали ромба при пересечении образуют прямой угол, и точкой пересечения делятся пополам. По теореме Пифагора мы найдем сторону ромба из прямоугольного треугольника, образованного его диагоналями.
√6^2+8^2=10. Так как стороны ромба равны, это ответ.
Достаточно убедиться, что сумма квадратов катетов равна квадрату гипотенузы. Для этого считаем квадраты всех отрезков. АВ^2 = 0^2 + 2^2 + 6^2 = 40 BC^2 = 4^2 + 5^2 + 3 ^2 = 50 AC^2 = 4^2 + 7^2 + 3^2 = 74 Видно, что квадрат АС меньше суммы двух других квадратов. Треугольник остроугольный Если ты ошибся в условии и точка B имеет по z координату не 9, а 8, тогда треугольник будет прямоугольным АВ^2 = 29 BC^2 = 45 AC^2 = 74 Если нужно будет,то могу потом скинуть подробное решение,но треугольник по твоим координатам всё равно выходит-остроугольным
10см
Объяснение:
Площадь ромба находится по формулке S=d1*d2:2
Примем меньшую диагональ за х, и составим уравнение
х*(х+4):2=96
x^2+4x-192=0
Решив уравнение, и отбросив отрицательный корень( так как длина стороны не может быть отрицательна) мы получим длину меньшей диагонали. Она равна 12 см. Тогда большая диагональ равна 16 см.
Как известно, диагонали ромба при пересечении образуют прямой угол, и точкой пересечения делятся пополам. По теореме Пифагора мы найдем сторону ромба из прямоугольного треугольника, образованного его диагоналями.
√6^2+8^2=10. Так как стороны ромба равны, это ответ.