построим трапецию ABCD
обозначим верхнее основание - а
треуг ABD прямоугольный равнобедренный
ABKD -квадрат со
стороной а
диагональю BD = a√2
площадью S(ABKD)=a^2
площадью треуг ABD - половина квадрата S(ABD)=a^2/2
треуг СBD прямоугольный равнобедренный
BD = BC = a√2
тогда по теореме Пифагора DC=√((a√2)^2+(a√2)^2)= 2a
площадь треуг CBD S(CBD )=1/2 *a√2*a√2=a^2
общая площадь S=S(ABD)+S(CBD )=a^2/2 +a^2 =3*a^2/2 = 18^2
отсюда
3*a^2/2 = 18^2
а=6√6
средняя линия m= (a+2a)/2 = 6√6 /2= 3√6
ответ 3√6
<ABC=zACB(Т.к. углы при основании равнобедр. треуг.)=30° <BAC=180-30*2=120°
a)AB * AC = 8 * 8 * cos120 = 64 * (-cos60) 64 * (-) = -32
b) Т.к. DE соединяет середины двух сторон.значит,DE-средняя линия равнобедренного треугольника ABC → DE||BC и DE=0.5BC По теореме синусов:
BC AB
sin120 sin30
BC
AB * sin120
sin30
BC BC = 8√3 8* 2
DE=4√3 BC * DE = 8√3 * 4√3 * cos0 1 €96 - 32 * 3 *
с)Если отложить от одной точки вектора АВ и ВС,то образуется угол = 180-30=150°(Просто продолжаешь AB и находишь смежный угол)
AB* BC = = 8 * 8√3* cos150 = 64√/3* *
(- = -32 * 3 = -9
30 см.
Объяснение:
В равнобедренном треугольнике высота является и биссектрисой угла, поэтому ∠MNО=∠ОNР=120:2=60°.
Рассмотрим ΔNOР - прямоугольный, ∠РNO=60°, ∠Р=90-60=30°, значит МN=NР=2NO, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
MN=15*2=30 см