Пусть С- начало координат.
Пусть ромб единичный.
Ось X - CA
Ось Y - перпендикулярно X в сторону B
Ось Z - перпендикулярно плоскости ромба в сторону E
координаты точек
E(√3;0;2)
B(√3/2;0.5;0)
D(√3/2;-0.5;0)
Уравнение плоскости EBC (проходит через начало координат)
ax+by+cz=0
подставляем координаты точек
√3a+2c=0
√3a/2+b/2=0 или √3a+b=0
Пусть a=2√3 тогда b= -6 c= -3
уравнение 2√3x-6y-3z=0
Уравнение плоскости ECD (проходит через начало координат)
ax+by+cz=0
подставляем координаты точек
√3a+2c=0
√3a/2-b/2=0 или √3a-b=0
Пусть a=2√3 тогда b= 6 c= -3
уравнение 2√3x+6y-3z=0
Косинус искомого угла равен
| 2√3*2√3 -6*6 +3*3 | / ((2√3)^2+6^2+3^2) = 15 / 57 = 5/19
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.