Прямоугольный треугольник с катетам 4 см вписан в окружность. найдите площадь правильного шестиугольника, описанного около данной окружности.
Объяснение:
Дано : ΔАВС вписан в окружность, ∠С=90° , СА=СВ=4 см, правильный шестиугольник описан около данной окружности.
Найти :S(правильного шестиугольника).
Решение .
ΔАВС-прямоугольный, ∠С=90° , значит опирается на дугу в 180°⇒АВ диаметр. Найдем гипотенузу АВ по т. Пифагора
АВ=√( 4²+4²)=2√2 (см). Поэтому R=1/2*АВ=√2 (см).
Шестиугольник описан около данной окружности , значит для него √2 является радиусом вписанной окружности r=√2 cм.
По формуле r₆= ( a₆√3) /2 ⇒ √2=( a₆√3) /2 или a₆=(2√2) /√3 (см)
S=1/2*Р*r
S=1/2*(6*(2√2) /√3 )*√2=12/√3=4√3 (cм²)
Прямоугольный треугольник с катетам 4 см вписан в окружность. найдите площадь правильного шестиугольника, описанного около данной окружности.
Объяснение:
Дано : ΔАВС вписан в окружность, ∠С=90° , СА=СВ=4 см, правильный шестиугольник описан около данной окружности.
Найти :S(правильного шестиугольника).
ΔАВС-прямоугольный, ∠С=90° , значит опирается на дугу в 180°⇒АВ диаметр. Найдем гипотенузу АВ по т. Пифагора
АВ=√( 4²+4²)=2√2 (см). Поэтому R=1/2*АВ=√2.
Шестиугольник описан около данной окружности , значит Для него √2 является радиусом вписанной окружности ,r₆= ( a₆√3) /2⇒
√2=( a₆√3) /2 или a₆=(2√2) /√3 (см)
S=1/2*Р*r
S=1/2*(6*(2√2) /√3 )*√2=12/√3=4√3 (cм²)
1)Т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. АВ+CD=BC+AD=6+24=30 (см)
Т.к. АВ=CD, то АВ=CD =30:2=15 (см).
2) Из Δ АВВ1-прям.:АВ=15, АВ1=(AD-BC)/2=(24-6):2=9(cм), тогда
ВВ1= √(АВ²-АВ1²)=√15²-9²=√144=12(см).
3) Sтрап.= ½· (AD+BC)·BB1=½·30·12=180 (см²)
4) Радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. R=½·BB1=6(см).
ответ: 6 см; 180 см².