∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
1.Вертикальные углы — это пары углов с общей вершиной, которые образованы при пересечении двух прямых так, что стороны одного угла являются продолжением сторон другого.
Вертикальными называются два угла, стороны одного из которых являются дополнительными лучами до сторон другого угла.
Вертикальные углы равны.
При пересечении двух прямых образуются две пары вертикальных углов
2.Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны
3.Равнобедренный треугольник (isosceles triangle)— это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
4.В равнобедренном треугольнике углы при основании равны
В равнобедренном треугольнике с основанием ВС проведем биссектрису АДТреугольники АВД=АСД по 1 признаку равенства т к АВ=АС по условию,АД-общая сторона <BAD=<DAC т к АД-биссектриса
В равных треугольниках против равных сторон лежат равные углы,поэтому <B=<C
5.Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок