Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Рассмотрим ∆АВD.
P – середина АВ по условию;
Т – середина АD по условию;
Следовательно РТ – средняя линия ∆ABD. Средняя линия треугольника вдвое меньше стороны треугольника, которой она параллельна.
PT//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда РТ=0,5*BD=0,5*8=4 см
Рассмотрим ∆BCD.
Q – середина СВ по условию;
R – середина CD по условию;
Следовательно QR – средняя линия ∆BCD. Средняя линия равна половине стороны, которой она параллельна.
QR//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда QR=0,5*BD=0,5*8=4 см.
PT//BD и QR//BD => РТ//QR.
РТ=4 см; QR=4 см => РТ=QR.
Тогда получим что, две противоположные стороны четырехугольника PQRT параллельны и равны, следовательно четырехугольник PQRT – параллелограмм.
Рассмотрим ∆PBQ u ∆ABC.
Угол АВС – общий;
Так как точка Р – середина АВ, то РВ равна половине АВ
Следовательно РВ/АВ=1/2;
Так как точка Q – середина СВ, то QB равно половине СВ
Тогда QB/CB=1/2;
Исходя из найденного, ∆PBQ~∆ABC по двум пропорциональным сторонам и углу между ними, а коэффициент подобия треугольников 1/2.
Следовательно PQ/AC=1/2;
2/AC=1/2;
AC=2*2
AC=4 см.
ответ: Параллелограмм; РТ=4 см; АС=4 см.