Пусть E - точка пересечения прямых BC и AD. Если Е не совпадает с D (на чертеже изображен как раз один из таких случаев), то прямоугольные треугольники BED и CED равны по гипотенузе и катету: BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE, а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA. (Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD). Далее, треугольники BDA и CDA равны по сторонам и углу между ними (AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.
Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
BD=CD по условию, а ED - общий катет. Отсюда ∠BDE=∠CDE,
а т.к. точки A,D,E лежат на одной прямой, то и ∠BDA=∠CDA.
(Заметим, что если Е совпала с D, то равенство углов ∠BDA и ∠CDA следует сразу из условия, т.к. BC⊥AD).
Далее, треугольники BDA и CDA равны по сторонам и углу между ними
(AD - общая, BD=CD по условию, ∠BDA=∠CDA доказали выше), а значит, AB=AC, что и требовалось.