Значит так. Вспомним что такое равнобедренный треугольник и высота. Равнобедренный треугольник у которого боковые стороны равны и углы при основании равны. Высота - перпендикуляр проведённый из вершины к противоположной стороне. И он образует прямой угол. Приступим к задаче: Пусть треугольник ABC. AC-основание. т.к. треугольник равнобедренный, то AB=10 и BC=10 (AB и BC боковые стороны) Высота BH образует два прямоугольных треугольника ABH и BCH. Можно из треугольника ABH найти AH, по теореме пифагора. AB^2=BH^2+AH^2 выражаем AH^2 AH^2=AB^2-BH^2=100-64=36 AH=6 таким же образом находим HC в треугольнике HBC. т.к. треугольник равнобедренный то HC то же будет равно 6 AC=HC+AH=6+6=12 ОТвет: AC=12
1)высота - перпендикуляр, проведенный из вершины геометрической фигуры. Обозначим её АМ. BC - гипотенуза треугольника ABC. Численно равна 30. Пользуясь теоремой Пифагора запишем формулы для каждого из треугольников.
для большого треугольника ABC: AB^2 + AC^2 = BC^2
для треугольника ABM: AB^2 = AM^2 + BM^2
для треугольника AMC: AC^2 = MC^2 + AM^2
подставляем два последних выражения в первое: AM^2 + BM^2 + MC^2 + AM^2 = BC^2
Вспомним что такое равнобедренный треугольник и высота. Равнобедренный треугольник у которого боковые стороны равны и углы при основании равны.
Высота - перпендикуляр проведённый из вершины к противоположной стороне. И он образует прямой угол.
Приступим к задаче:
Пусть треугольник ABC. AC-основание.
т.к. треугольник равнобедренный, то AB=10 и BC=10 (AB и BC боковые стороны)
Высота BH образует два прямоугольных треугольника ABH и BCH.
Можно из треугольника ABH найти AH, по теореме пифагора.
AB^2=BH^2+AH^2 выражаем AH^2
AH^2=AB^2-BH^2=100-64=36
AH=6
таким же образом находим HC в треугольнике HBC.
т.к. треугольник равнобедренный то HC то же будет равно 6
AC=HC+AH=6+6=12
ОТвет: AC=12