1) тут можно воспользоваться теоремой высоты прямоугольного треугольника. Еcли на произвольной прямой отложить циркулем cумму смежных сторон и как на диаметре построить окружность,то все углы вписанные в эту окружность будут прямыми. ПО теореме высоты ab=A^2 где a,b -cтороны равновеликого прямоугольника , A-cторона исходного квадрата. Пользуясь этим,проведем перпендикулярно к сумме смежных сторон в произвольное место отрезок ,являющийся стороной квадрата.К его верхнему концу проведем перпендикулярную прямую.В пересечении этой прямой с окружностью получим точку.Из нее снова проведем перпендикуляр к сумме смежных сторон.То на какие отрезки разделит этот перпендикуляр сумму смежных сторон и будут сторонами искомого прямоугольника.2)Воспользуемся тем что диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.Проведем из точки P к вершине угла прямую,продлив ее с другой стороны,отложим отрезок PO с другой стороны от точки P на этой прямой OP=PO1 из точки О1 прповедем прямые параллельные сторонам угла.И получим точки пересечения M,N ,тогда тк MONO1-параллелограмм ,то диагонали пересекутся в точке P,и там делятся пополам.
ответ:100 см²
Объяснение: В четырехугольник можно вписать окружность ( или круг) тогда и только тогда. когда суммы противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
ВС+АD=АВ+AD=14+11=25 (см).
Высота трапеции равна диаметру вписанной окружности. ⇒ ВН=2r=2•4=8
Площадь трапеции равна произведению высоты и полусуммы оснований.
S=h•(a+b)/2=8•25/2=100 см².
----------------------
Как видим, для нахождения площади отношение оснований трапеции является лишним. Но для нахождения длин сторон пригодится.
Примем коэффициент отношения ВС:АD равным а.
Тогда ВС=2а, АD=3а.
ВС+АD=5a=25 (см. выше). ⇒ а=5. ⇒
ВС=2•5=10 см
АD=3•5=15 см.