Ну что ж.. . Одну вершину C мы найдем сразу - это точка пересечения наших прямых x+y-4=0 2x+y-1=0 x=-3 y=7 Вторая и третья вершина будут иметь координаты A(a, 4-a) и B(b, 1-2b) Тогда середины сторон AB BC AC будут ((a+b)/2,(5-a-2b)/2) ((b-3)/2, (8-2b)/2) ((a-3)/2, (11-a)/2)
Далее медианы своей точкой пересечения делятся 2 к одному. А точка эта (0,0) То есть если вершина имеет координаты (х, у) , то основание медианы из этой вершины (-x/2,-y/2)
Тогда для С имеем: a+b=3 5-a-2b=-7
b=9 a=-6
То есть B(9,-17) A(-6,10)
Остается написать уравнение прямой AB - это уже просто: 9x+5y+4=0
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
угол В=55 градусов
угол С = 55 градусов