Геометрия 8 класс, хорды и дуги.
Нужно решить задания по данному рисунку
1. Отношение дуг АВ и АС окружности соответственно равно 3 : 2 (рис.). Найти ˂ВОС, ˂ВАС.
2. В окружности с радиусом 7,5 см проведены диаметр АС и хорда АК, равная 9 см. Найдите длину хорды СК.
3. Две хорды одной окружности пересекаются в точке, делящей одну из хорд на отрезки 2 см и 16 см, а другую - на отрезки, один из которых в два раза больше другого. Найдите длину второй хорды.
1) Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине
2) При каждой вершине треугольника получается два внешних угла, таким образом, всего 6 внешних углов. Внешние углы каждой пары, данной вершины равны между собой (как вертикальные): поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.
3) Теорема о внешнем угле треугольника (внешний угол больше внутреннего)
4) Угол ВDС равен углу ВСD, так как они лежат против равных сторон в треугольнике. Угол ВDС — внешний угол треугольника АDС, поэтому он больше угла А.
5) Сторона, лежащая против такого угла, называется гипотенузой (АВ), а две другие стороны ― катетами (АС и ВС). Свойства прямоугольного треугольника: 1. В любом прямоугольном треугольнике гипотенуза всегда больше катета (против большего угла лежит большая сторона, и наоборот).
Объяснение: