Много времени угрохал. Точнее будьте в след. раз.
Все площади маленьких треугольников, на которые мы раздробим треугольник АВС, будем находить по формуле полупроизведение сторон на синус угла между ними. учитав, что синус альа и синус (180-альфа)- это одно и то же. Итак. соединяем точки А и В₁
Получим два равновеликих треугольника АВВ ₁ и АА₁В₁, У них стороны А₁В₁ = В₁В, а АВ₁ - общая, получаем, что у них площади будут отличаться только синусом угла, но синус угла ВВ₁А равен синусу угла А₁В₁А, т.к. это смежные углы, в сумме составляют 180 град. и эта же площадь равна площади заштрихованной фигуры, т.к. площадь треуг.АВ₁А₁ равна половине произведения А₁В₁на А₁А и на синус угла АА₁В₁, а площадь заштрихованной фигуры равна половине произведения А₁В₁ на А₁С₁ и на синус угла В₁А₁С₁, у этих площадей А₁В.- -общая, АА₁=А₁С₁, а синус раньше написал, почему равны. Еще дважды надо проделать такую же операцию. Т.е. соединим точки В и С₁ там тоже получим два равновеликих треугольника ВВ1С1 и ВСВ1, площади КАЖДого ИЗ КОТОРЫХ будет равен площади заштрихованной фигуры.
И наконец, соединим точки С и Содин, тоже получим два равновеликих треуг. АА1С и С1А1С, таким образом, получили 7 равновеликих треугольников, значит, площадь заштрихованной фигуры составляет одну седьмую часть от площади треугольника АВС.
Удачи.
∆ ABC,
∠C=90º,
∠A=30º.
(изображение 1)
Доказать:
BC=1/2AB
Доказательство:
Так как сумма острых углов прямоугольного треугольника равна 90º, то
∠B=90º-∠A=90º-30º=60º.
Проведем из вершины прямого угла медиану CF.
(изображение номер 2,дорисовать к существующему)
Так как медиана, проведенная к гипотенузе, равна половине гипотенузы, то
СF=1/2AB
то есть, CF=AF=BF.
Так как BF=CF, то треугольник BFC — равнобедренный с основанием BC.Следовательно, у него углы при основании равны:
∠B=∠BCF=60º.
Так как сумма углов треугольника равна 180º, то в треугольнике BFC
∠BFC =180º -(∠B+∠BCF)=60º.
Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.
Значит, все его стороны равны и
BC=CF=BF=1/2AB
Что и требовалось доказать.