205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -
Пусть BN=NC=6; MN прл АВ => BC пп MN, а также и КМ (по условию); => KN пп BC.
a) KN = корень(КМ^2 + MN^2) = корень (252), не упрощается.
b) в пр тр-ке KAM катеты 6 и 6*корень(3), поэтому угол KAM = 60 градусам.
АК = 2*АМ=12; тр-к АВК равнобедренный (и прямоугольный, так как АВ пп АМ и КМ, а => АВ пп АК :))
SABK = 12*12/2 = 72
SAMB = 6*12/2 (между прочим, и = SABK*cos(KAM)) = 36;
c) Поскольку ВС прл плоскости АКМ, то расстояние от АК до ВС равно АВ (которая пп беим прямым) ;
*пп - перпендикулярно;
прл - параллельно;
тр-к - треугольник
пр тр-к - прямоугольный треугольник.