Та как диагональ перпендикулярна боковой стороне параллелограмма она будет являться высотой данного параллелограмма Площадь параллелограмма S=a*h (где a – сторона h – высота) Выразим из формулы высоту: h=S/a h=12/4=3 Рассмотрим треугольник образованный боковой стороной параллелограмма, диагональю и основанием. Данный треугольник прямоугольный с гипотенузой равной основанию параллелограмма. По теореме Пифагора гипотенуза равна с= √(a^2+h^2) (где a и h – катеты) с= √(4^2+3^2)= √(16+9)= √25= 5 ответ: основание данного параллелограмма равна 5
1)равносторонний треугольник вписанная окружность лежит на пересечении биссектрис описанная окружность лежит на пересечении серединных перпендикуляров в равностороннем треугольнике эти два понятия совпадают и их точка пересечения также совпадает с точкой пересечения высот и медиан медианы делятся точкой пересечения в отношении 1 к 2 R (радиус описанной окружности) = 2/3 медианы R=(a*sqrt{3})/3 r (радиус вписанной окружности) =1/3 медианы r=(a*sqrt{3})/6
2)квадрат r=a/2 радиус описанной окружности равен половине диагонали R=(a*sqrt{2})/2
3)правильный шестиугольник если вершины соединить с центром шестиугольника образуется 6 равносторонних треугольников радиус описанной окружности равен стороне образовавшегося равностороннего треугольника R=a радиус вписанной окружности равен высоте образовавшегося равностороннего треугольника r=(a*sqrt{3})/2
Відповідь: 10 см
Пояснення: d =a|/2, де а - сторона квадрата.
S=a^2, a^2=50, a=|/50=5|/2.
d=5|/2 *|/2=10 (см)