Гипотенуза прямоугольного треугольника равна 18 см. Один из острых углов в 2 раза меньше другого. Найдите катет, лежащий против большего из острых углов 15см 9√3см 17см 3√3см
Треугольник со сторонами 156, 156, ,120 делим перпендикуляром к основнованию пополам. получаем прямоугольный треугольник со сторонами 156, 60, h. назовём его V по теореме Пифагора h^2+60^2=156^2 h^2=156^2-60^2=(156-60)(156+60)=96*216=16*6*6*36 h=4*36=144 продлим серединный перпендикуляр основания до центра окружности. из центра окружности к касательной построим радиус. Получится прямоугольный треугольник, со сторонами 156, r и гипотенузой, назовём его W V и W подобны - один угол у них общий, второй 90 градусов. третий тоже одинаков. 60/144=r/156 r=60/(12*12)*12*13=5*13=65 см
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
по теореме Пифагора
h^2+60^2=156^2
h^2=156^2-60^2=(156-60)(156+60)=96*216=16*6*6*36
h=4*36=144
продлим серединный перпендикуляр основания до центра окружности. из центра окружности к касательной построим радиус. Получится прямоугольный треугольник, со сторонами 156, r и гипотенузой, назовём его W
V и W подобны - один угол у них общий, второй 90 градусов. третий тоже одинаков.
60/144=r/156
r=60/(12*12)*12*13=5*13=65 см