объяснение: смотри вложение.
чтобы найти сечение, нужно найти точки, принадлежащие плоскости сечения и плоскостям, содержащим грани фигуры. затем соединить эти точки. сечение готово.
1. точки m и n принадлежат и сечению и грани afd, проводим прямую mn до пересечения с продолжением ребра da. точка р принадлежит и плоскости сечения, и грани авсd. поэтому можем провести прямую рк до пересечения с продолжением ребра dc. точка т принадлежит и плоскости сечения, и грани dcf, плэтому можем соединить точки м и т и получить точку g, принадлежащую и плоскости сечения, и грани dfc. мы так же получили и точку е на ребре ав.
соединяем точки m,n,е,k,g и м.
фигура mnekg - искомое сечение.
2. 1. проводим прямую mn, получаем точки р и q на пересечении с аа1 и ad.
2.проводим прямую рк и получаем точки g и t.
3. проводим прямую тq и получаем точки e и f.
4. соединяем точки m,n,e,f,k,g и m и получаем искомое сечение mnefkg.
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√18=3√2(см).
ВК-высота трапеции, значит r=(3√2)/2 см.
S(круга)= π ( (3√2)/2 )²=4,5π (см²)