Биссектриса делит катет на отрезки 4см и 5 см, значит весь катет равен 9 см. По свойству биссектрисы она делит сторону треугольника пропорционально соответствующим сторонам. Пусть коэффициет пропорциональности равен х (х>0), тогда катет равен 4х, а гипотенуза 5х. По теореме Пифагора (5х)² = (4х)² + 9² 25 х² = 16х² + 81 9х² = 81 х² = 9 х = 3 Значит второй катет равен 4 * 3 = 12 а гипотенуза 5 * 3 = 15 Радиус описанной окружности равен половине гипотенузы R = 15 : 2 = 7,5см 2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике 4² = х * (х +6), получим квадратное уравнение х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи). Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12 h = √12 = 2√3cм
Биссектриса делит катет на отрезки 4см и 5 см, значит весь катет равен 9 см. По свойству биссектрисы она делит сторону треугольника пропорционально соответствующим сторонам. Пусть коэффициет пропорциональности равен х (х>0), тогда катет равен 4х, а гипотенуза 5х. По теореме Пифагора (5х)² = (4х)² + 9² 25 х² = 16х² + 81 9х² = 81 х² = 9 х = 3 Значит второй катет равен 4 * 3 = 12 а гипотенуза 5 * 3 = 15 Радиус описанной окружности равен половине гипотенузы R = 15 : 2 = 7,5см 2) Предположим, что проекция катета равного 4 см на гипотенузу равна х см, тогда по соотношениям в прямоугольном треугольнике 4² = х * (х +6), получим квадратное уравнение х² + 6х - 16 = 0. по теореме обратной к теореме Виета. Получим корни х₁ = 2 и х₂ = -8(второй корень не подходит по условию задачи). Значит гипотенуза равна 2 +6 = 8 см, а высота h² = 2 * 6 = 12 h = √12 = 2√3cм
1. BAD BCD
2. MKT KTN
3.Здесь по моему равных неть
4.Здесь по моему тоже
5. SPM MKT; PMR MKR
6. AED DFB; ECD CFD
7.RMT NTS
8.MKR RLN
9.AED DCF FMB
10.ABD DCB
Объяснение:
Лично я определила с метода наложения