1)Вычислите площадь боковой поверхности цилиндра, если радиус основания равен 1 см, а высота цилиндра 2 см. 2)Найти радиус цилиндра, если площадь полной поверхности цилиндра равна 20π.
Если соединить концы медиан, т.е. середины сторон, то мы получим треугольник, подобный данному с коэффициентом подобия 2, т.е размеры этого треугольника будут в 2 раза меньше, чем соответствующие размеры у исходного треугольника. Известно, что площади подобных треугольников относятся, как квадраты коэффициентов подобия, значит площадь нового треугольника будет в 4 раза меньше площади данного треугольника. А соединяя середины медиан мы ещё в два раза уменьшаем размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого мы должны площадь данного треугольника разделить на 16 и получим 1 ответ: 1
Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
А соединяя середины медиан мы ещё в два раза уменьшаем размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого
мы должны площадь данного треугольника разделить на 16 и получим 1
ответ: 1