не могу сделать рисунок, поэтому напишу так, думаю разберешься.
пусть пирамида МАБСД, где м-вершина. т.к. основание квадрат, а его периметр 24, из этого находим одну сторону- АД=24:4=6.
бок.поверхность равна 96, значит площадь одного треугольника равна- амд=96:4=24
рассмотрим треугольник амд. он равнобедренный, его площадь 24, сторона ад равна 6. апофема пирамиды это высота боковой грани правильной пирамиды, проведенная из ее вершины. проведем из вершины М перпендикуляр к стороне АД, получаем МО.
АО=6/2=3. высота треуголника АМД(она же апофема пирамиды) равна 24:3=8
Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
не могу сделать рисунок, поэтому напишу так, думаю разберешься.
пусть пирамида МАБСД, где м-вершина. т.к. основание квадрат, а его периметр 24, из этого находим одну сторону- АД=24:4=6.
бок.поверхность равна 96, значит площадь одного треугольника равна- амд=96:4=24
рассмотрим треугольник амд. он равнобедренный, его площадь 24, сторона ад равна 6. апофема пирамиды это высота боковой грани правильной пирамиды, проведенная из ее вершины. проведем из вершины М перпендикуляр к стороне АД, получаем МО.
АО=6/2=3. высота треуголника АМД(она же апофема пирамиды) равна 24:3=8
ответ 8