М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

В треугольнике ABC провели биссектрису CE. Найдите стороны АС и ВС и биссектрису СЕ, если АЕ=а, <А=альфа, <В=бета. Как можно скорее. С меня

👇
Открыть все ответы
Ответ:
satanbeat
satanbeat
30.08.2021
ABCD-параллелoграмм, EFGH -ромб. Для удобства введем обозначения: a - сторона ромба (они равны по определению ромба) d - диагональ AC 33d - диагональ BD (по условию) AE - k EB - t Площадь параллелограмма через диагонали равна BD*AC*sinα/2 = 33d*d*sinα/2 = 16,5d^2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу). Так как стороны ромба параллельны диагоналям, образуется маленький параллелограмм, а значит противоположные углы равны (по свойству параллелограмма). Рассмотрим треугольники ABC и EBF. ∠EBF - общий ∠BFE=∠BCA (это соответственные углы для параллельных прямых EF и AC с секущей FC) Следовательно, треугольники ABC и EBF подобны (по первому признаку подобия). Тогда EF/AC=a/d=t/(t+k) Аналогично, подобны и треугольники ABD и AEH. Для них справедливо: a/33d=k/(t+k) Складываем эти два уравнения: a/d+a/33d=t/(t+k)+k/(t+k) 33a/33d+a/33d=(t+k)/(t+k) 34a/33d=1 34a=33d a=33d/34 Sромба=a^2sinα Sпараллелограмма=16,5d^2*sinα (это мы выяснили ранее) Sромба/Sпараллелограмма=(a^2sinα)/(16,5d^2*sinα)=a^2/(16,5d^2)=(33d/34)^2/(16,5d^2)=1089/(1156*16,5)=33/578 ответ: 33/578
4,7(67 оценок)
Ответ:
kivialisalittlee
kivialisalittlee
30.08.2021
Многогранник  — обычно замкнутая поверхность, составленная из многоугольников, но иногда так же называют тело, ограниченное этой поверхностью.

                    каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне);
                 связность: от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним, и т. д.
Эти многоугольники называются гранями, их стороны — рёбрами, а их вершины — вершинами многогранника.
4,4(69 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ