Рассмотрим два угла првильного многоугольника и треугольники построеные на них за условием задачи: Треугольники М1А2М2 и М2А3М3, они равны за первым признаком: 1) А2=А3(правильный пятиугольник); 2) М1А2=М2А3(половина стороны); 3) А2М2=А3М3(вторая половина стороны). Найдем угол М1М2М3 - он равный М2А3М3, поскольку А3М2М3=(180-М2А3М3)/2, а М1М2М3=180-2*А3М2М3=М2А3М3 - это угол пятиугольника. М1М2=М2М3 - сторона пятиугольника. Теперь применим наши суждения ко всем углам пятиугольника и увидим, что мы получили некоторую пятиугольную фигуру, у которой пять равных сторон и пять равных углов, тоисть имеем правильный пятиугольник. Думаю так...
Ищем сначала площадь треугольника со сторонами 10,17, 21. Используем т. Герона. Ищем полупериметр: ( 10 + 17 + 21) : 2 = 24 Теперь площадь треугольника. S = √24·14·7·3 = 84. Для чего нужна эта площадь? Чтобы найти высоту трапеции ( она равна высоте треугольника) S = 1/2· 21 ·H 84 = 1/2·21·H H = 8 ( это высота трапеции) Теперь надо найти верхнее основание. Опустим перпендикуляры на нижнее основание из вершин трапеции. Получим 2 равных прямоугольных треугольника. Ищем катет по т. Пифагора b^2 = 100 - 64 = 36 b =6 ( в другом Δ тоже 6) значит,верхнее основание 21 - 12 = 9 Можно искать площадь трапеции S = ( 9 + 21)·8: 2 = 120
Треугольники М1А2М2 и М2А3М3, они равны за первым признаком:
1) А2=А3(правильный пятиугольник);
2) М1А2=М2А3(половина стороны);
3) А2М2=А3М3(вторая половина стороны).
Найдем угол М1М2М3 - он равный М2А3М3, поскольку А3М2М3=(180-М2А3М3)/2, а
М1М2М3=180-2*А3М2М3=М2А3М3 - это угол пятиугольника.
М1М2=М2М3 - сторона пятиугольника.
Теперь применим наши суждения ко всем углам пятиугольника и увидим, что мы получили некоторую пятиугольную фигуру, у которой пять равных сторон и пять равных углов, тоисть имеем правильный пятиугольник. Думаю так...