ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
1)МК(-1-(-2), 3-(-4))=(1,7)
РМ(-2-4,-4-4)=(-6,-8)
2)модуль MK: √(1+7^2)=√50
модуль PM√(6^2+8^2)=10
3)EF(2*1-3*(-6), 2*7-3*(-8))=(20,38), нужно домножить координаты векторов на соответствующие коэффициенты, затем выполнить вычитание соответствующих векторов
4)1*(-6)+7*(-8)=-62, нужно сложить произведения соответствующих координат векторов
5)-62/10√50, т.к Скалярное произведение это произведение модулей векторов и косинуса угла между ними, нужно разделить Скалярное произведение на произведение модулей векторов