211) Найдем гипотенузу треуг х²=40²+42² х²=1600+1764=3364 х=58, по теореме синусов а/sinα=в/sinβ=с/sinω=2R, где а, в, с, с-стороны треуг, α,β,ω-углы соответственно противолежащие этим сторонам, R-радиу описанной окружности. Мы незнаем углы лежащие напротив сторон 40 и 42, но знаем, что есть прямой угол и гопотенузу, тогда из этой теоремы пусть а-гипотенуза, тогда α=90-прямой угол, а/sinα=2R 58/sin90=2R 58/1=2R R=58/2=29см. 2) Равносторонний треугольник-все стороны и углы равны, пусть а-сторона треуг, тогда а=(6√3)/3=2√3, α-углы треуг=180/3=α=60, тогда по теореме синусов а/sinα=2R (2√3)/sin60=2R=(2√3)/(√3/2)=4 R=4/2=2 3) r=√(((р-а)(р-в)(р-с))/р), где r-радиус вписанной окружности, р-полупериметр треуг р=(а+в+с)/2, а, в, с-стороны треуг. р=(13+14+15)/2=21 r=√(((21-13)(21-14)(21-15))/21)=√((8*7*6)/21)=√336/21=√16=4
S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
2) Равносторонний треугольник-все стороны и углы равны, пусть а-сторона треуг, тогда а=(6√3)/3=2√3, α-углы треуг=180/3=α=60, тогда по теореме синусов а/sinα=2R (2√3)/sin60=2R=(2√3)/(√3/2)=4 R=4/2=2
3) r=√(((р-а)(р-в)(р-с))/р), где r-радиус вписанной окружности, р-полупериметр треуг р=(а+в+с)/2, а, в, с-стороны треуг. р=(13+14+15)/2=21 r=√(((21-13)(21-14)(21-15))/21)=√((8*7*6)/21)=√336/21=√16=4