Смотрите, как можно решать такие задачи в уме.
Правильный тетраэдр все равно на какую грань ставить :)) поэтому можно искать расстояние от центра окружности, описанной вокруг боковой грани, до основания тетраэдра.
А центр описанной окружности у правильного треугольника находится в точке пересечения медиан (высот, биссектрис и пр), то есть на АПОФЕМЕ в точке 2/3 АПОФЕМЫ от вершины пирамиды (и 1/3 от основания). Поэтому расстояние от этой точки до плоскости основания будет 1/3 от ВЫСОТЫ ПИРАМИДЫ (тетраэдра).
Осталось только найти высоту тетраэдра и разделить её на 3...
Высота тетраэдра находится из прямоугольного треугольника, составленного из неё, бокового ребра и проекции бокового ребра на основание, которая равна 2/3 высоты треугольника (это радиус описанной вокруг правильного треугольника окружности).
Высота тетраэдра корень(2/3), а искомое расстояние (1/3)*корень(2/3)
1) найдем сторону аb по теореме Пифагора :
2 2 2
pb = pa + ab
2 2 2 2
ab = корень (pb - pa ) = корень (17 - 8 ) = 15
2) найдем сторону ас по теореме Пифагора :
2 2 2 2
ас = корень ( pc - pa ) = корень (4корень13 - 8 ) = корень ( 16 * 13 - 64) = 12
3) найдем сторону cb по теореме Пифагора :
2 2 2 2
cb = корень (ab - ac ) = корень (15 - 12 ) = 9
4) Площадь прямоугольного треугольника = 1/2 произведений катетов найдем площади трех прямоугольних треугольников:
Sapb = 1/2 (pa * ab) = 1/2(8*15) = 60
Sapc = 1/2 (ap * ac) = 1/2(8*12) = 48
Sacb =1/2 (ac * cb) = 1/2(12*9)=54
найдем площадь треугольника Spcb = 1/2(pc * cb) = 1/2 (4корень13 * 9)
найдем площадь пирамиды Sapb + Sapc + Sacb + Spcb = 60 + 48 + 54 + 1/2(4корень13*9)