Смотри рисунок. не будем говорить про банальные вещи - у равностороннего треугольника все стороны равны, все углы =60, медианы , биссектрисы и высоты являются одними и теми же линиями и пересекаются в одной точке. Просто вспомним 1) нахождение площади треугольника = половина произведения сторон на синус угла между ними. В данном случае - стороны равны, угол =60 2) то, что ЛК естественно, средняя линия и равна половине АВ (Л и К -середины соответствующих сторон) 3) то, что площадь АВО равна трети исходного ( все три треугольника, составляющих исходный, равны по ... (например, по трем сторонам - т.к. основания равны, а стороны являются радиусами описанной окружности) 4) площади подобных треугольников пропорциональны квадрату коэфф. подобия ( основания в данном случае различаются в 2 раза , значит и высоты тоже в 2, площадь в 2*2=4 раза)
Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.