Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3