Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
2) Так как АD -биссектриса,то ∠ CAD=∠BAD= 49° Значит ∠A= 98° ∠B=180°-∠A-∠С=180°-98°-71°=10° В треугольнке ABD
∠ADB=180°-∠BAD-∠B=180°-49°-10°=121°
3)В треугольнике АВС АС=ВС, значит треугольник равнобедренный и углы при основании равны,∠ABС= ∠ВAС Так как ∠ ВАD= 35° и сумма острых углов прямоугольного треугольника равна 90 °, то ∠ АВD= 90°- 35°=55° ∠А=∠В=55° ∠С=180°-∠А-∠В=180°-55°-55°=70°
4) Сумма углов четырехугольника АЕОD равна 360° Два угла по 90° (угол Е и угол D) и один 75°( угол А) Значит ∠EOD=360°-90°-90°-75°=105°
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
∠BFA=180°-∠BAF-∠ABF=180°-17°-112°=51°
Сумма острых углов прямоугольного треугольника 90° ⇒
∠НАF=90°-51°=39°
Объяснение: