Высота усечённого конуса равна 1 см, диаметр одного основания вдвое больше диаметра другого основания. Образующая наклонена к плоскости большего основания под углом 450 . Найдите объём конуса. С рисунком
Я не знаю как вставить сюда рисунок, ну и ладно, тогда вникай. Походу, что эти биссектрисы пересекаются. В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11 Биссектрисы ВХ и CY делят угол на равные углы 45° Рассмотрим ΔХАВ и ΔYCД: ∠АВХ=∠ДCY = 45° (по док. выше) АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее) Из этого всего мы доказали, что ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними) Из этого доказательства мы выяснили, что АХ=ДY = 6 Но вся сторона АД = 11, получается, что две биссектрисы пересекаются и расстояние между XY 1 см(или в чем там измеряется)
Я здесь что-то много написал, но ты разберись и сам напиши попонятнее Но я старалась )
Проведем высоту ромба АН.М - точка пересечения этой высоты с диагональю DB. <АМВ=<KDB (как соответственные при параллельных прямых КD и АН и секущей DB. <AMB=<DMH как вертикальные. Следовательно, нам надо найти синус угла DMH в прямоугольном треугольнике DHM. Диагональ ромба делит его углы пополам. Пусть <MDH=α. Тогда острый угол ромба равен 2α. Нам дано, что Sin2α=0,6. Sin2α=2SinαCosα. SinαCosα=0,3. Sin²αCos²α=0,09. Cos²α=1-Sin²α. Sin²α(1-Sin²α)=0,09. Пусть Sin²α=Х. Тогда Х²-Х+0,09=0. Находим корни этого квадратного уравнения: D=√(1-4*0,09)=0,8 Х1=(1+0,8)/2=0,9. Х2=(1-0,8)/2=0,1. Итак,имеем два корня: Sin²α=0,9 и Sin²α=0,1. Тогда 1)Sinα=√0,9 ≈ 0,949; 2)Sinα=√0,1 ≈ 0,316. Вспомним, что за угол α мы приняли ПОЛОВИНУ острого угла ромба. Значит первый корень нам не подходит, так как arcsin(0,949) ≈ 71°. Итак, нас удовлетворяет ответ Sinα=√0,1. В прямоугольном треугольнике DMH: Sinα=МH/DМ=Cosβ. Значит Cosβ=Sinα=√0,1. Тогда Sinβ=√(1-Cosβ²)=√0,9 ответ: Sinβ=0,9.
В прямоугольнике все углы равны 90°, а противоположные стороны равны ⇒АВ=СД=6, ВС=АД=11
Биссектрисы ВХ и CY делят угол на равные углы 45°
Рассмотрим ΔХАВ и ΔYCД:
∠АВХ=∠ДCY = 45° (по док. выше)
АВ=АХ(Потому что ∠AXB(1)=∠DYC(2) = 45° (по св парал. прямых; ∠1 и ∠ 2-накрестлеж., потому что лежат на парал. прямых при сек. ВX), а значит, что это треугольник равнобедренный)⇒ВА=СД
АХ=ДY (я здесь много что написал, но я надеюсь, что ты разбирешься и сам напишешь пограмотнее)
Из этого всего мы доказали, что ΔХАВ и ΔYCД равны (по двум сторонам и углу между ними)
Из этого доказательства мы выяснили, что АХ=ДY = 6
Но вся сторона АД = 11, получается, что две биссектрисы пересекаются и расстояние между XY 1 см(или в чем там измеряется)
Я здесь что-то много написал, но ты разберись и сам напиши попонятнее
Но я старалась )