1) Условие: даны 2 стороны (данных размеров) и угол между ними. Допустим, угол А, стороны АB, AD. Построение : При транспортира в точке B от AB откладываем угол 180 - A. После этого на этом углу откладываем BC длиной = AD. Потом соединяем точки C и D. 2) Условие : Есть 3 точки A B C. Построение : Примем, что B - начальный угол параллелограмма. Соединяем AB и BC. Теперь задача схожа с предыдущей (т.к. угол мы можем померить). Вариаций параллеллограмма может быть 3 (т.к. за начальный угол мы можем взять и А и B и С и в каждый раз у нас будут разные параллелограммы) 3) Построение : От вершины D откладываем угол D равный углу А (чтобы он были симметричен А) и откладываем DC равную AB. Потом соединяем B и C
Дополним усеченную пирамиду до полной.
Так как в правильной пирамиде высота проходит через центр окружности, вписанной в основание, то О и О1 — центры окружностей, вписанных в АВС и А1В1С1.
Проведем SK⊥AC, а значит, и SK1⊥A1C1.
Тогда по теореме о трех перпендикулярах ОК⊥АС и OK1⊥A1C1. Значит, ОК и O1K1 — радиусы окружностей, вписанных в правильные треугольники ABC и A1B1C1.
Так что,
Далее, проведем K1H⊥KO.
Тогда K1O1OH — прямоугольник, значит, К1Н = ОО1
Так как ∠K1KH является линейным углом двугранного угла между основанием и боковой гранью, то ∠K1KH = 60° (по условию).
Тогда в
Так что
ОО1 = К1Н = 2 см ответ: 2 см.