В равнобедренном треугольнике к боковой стороне проведена высота и биссектриса угла, прилежащего к основанию. Определи угол между высотой и биссектрисой, если угол вершины
АЕ-общая, значит равная, <MAE=<KAE так как AD-биссектриса
<MEA=<KEA=90 так как m⊥AD
из равенства этих треугольников следует равенство соответствующих углов <AME=<AKE
ΔAMD-в нем АЕ=ED по условию, значит МЕ-медиана его и <AEM=90
Поэтому МЕ и высота тоже. Только в равнобедренном треугольнике высота совпадает с медианой и еще является биссектрисой этого треугольника. Значит <DME=<AME=AKE-значит накрест лежащие углы DME и АКЕ равны-тогда прямые MD и AB параллельны
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ΔMAE=ΔKAE по стороне и 2 прилегающим углам
АЕ-общая, значит равная, <MAE=<KAE так как AD-биссектриса
<MEA=<KEA=90 так как m⊥AD
из равенства этих треугольников следует равенство соответствующих углов <AME=<AKE
ΔAMD-в нем АЕ=ED по условию, значит МЕ-медиана его и <AEM=90
Поэтому МЕ и высота тоже. Только в равнобедренном треугольнике высота совпадает с медианой и еще является биссектрисой этого треугольника. Значит <DME=<AME=AKE-значит накрест лежащие углы DME и АКЕ равны-тогда прямые MD и AB параллельны