25 см і 30 см
Объяснение:
Нехай ΔАВС - рівнобедрений, АВ = ВС, ∠ВАС < 60°. Бісектриса AD ділить висоту BЕ на відрізки BF = 27,5 см і FE = 16,5 см.
Знайти довжину відрізків BD та DC.
Розв'язання:
За властивістю бісектриси: АВ : АЕ = BF : FE = 27,5 : 16,5 = 5 : 3.
За теоремою Піфагора для ΔАВЕ:
AB² = AE² + BE²
(5x)² = (3x)² + (27,5 + 16,5)²
25х² = 9х² + 44²
16х² = 44²
(4х)² = 44²
4х = 44
х = 11
Отже, АВ = 5·11 = 55 см, АЕ = 3·11 = 33 см.
ВС = АВ = 55 см, АС = 2·АЕ = 33·2 = 66 см.
За властивістю бісектриси: ВD : DC = AB : AC = 55 : 66 = 5 : 6.
Нехай ВD = 5х, DC = 6х. Складемо рівняння:
BD + DC = BC
5х + 6х = 55
11х = 55
х = 5
ВD = 5·5 = 25 см
DC = 6·5 = 30 см
сумма всех углов треугольника равна 180 градусам. у нас известны два угла из трех ( b = 60, c = 90 ). поэтому мы можем найти третий угол:
180 - 60 - 90 = 30 ( это угол a )
в есть следующая теорема:
"в прямоугольном треугольнике катет, лежайщий против угла в 30 градусов, равен половине гипотенузы."
в данном треугольнике гипотенузой является ab (так как эта сторона лежит против угла в 90 градусов), катетами являются ac и cb.
из теоремы выше понятно, что ab = 2cb
известно, что ab + bc = 111
теперь выразим ab: ab = 111 - bc
теперь все это запишем в уравнение:
мы знаем, что ab можно выразить двумя способами: ab = 111 - bc и ab = 2cb
поэтому можно их прировнять
ab = ab
или
111 - bc = 2cb
111 = 3cb
cb = 111 / 3
так как ab = 2cb, ab = 2 * 111 / 3 = 74