Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Объяснение:
Рис. 1
1) ∠ ВАС - смежный с углом в 110 °.
Сумма смежных углов = 180 °, т. е.
110 ° + ∠ ВАС = 180 °, откуда
∠ ВАС = 180 ° - 110 ° = 70°
2) Сумма углов треугольника = 180°, т.е.
∠ ВАС + ∠ АВС + ∠ ВСА = 180° или
70° + 40° + ∠ ВСА = 180°, откуда
∠ ВСА = 180° - 70° -40° = 70°
△ АВС - равнобедренный по 2-м углам, АВ=ВС
ответ: ∠ ВАС = 70°, ∠ ВСА = 70°, ∠ АВС = 40°.
рис.2
∠АВС = 180° - 160° = 30° (т.к. эти углы смежные, и их сумма =180°)
∠САВ = 180° -90° -30° = 60°
Рис.3
∠ВСА = 180° -150° = 30°
т.к. АВ=ВС по условию, то △ АВС - равнобедренный, а значит,
∠ВСА = ∠ВАС = 30°
Т.к. сумма углов в треугольнике равна 180°, то
∠В = 180 -2*30° = 120°
рис.4
∠АВС = 180° - 140° = 40° (как смежные)
∠ВСА = 180° - 110° = 70° (как смежные)
∠А = 180° -70° - 40° = 70°
Рис.5
∠ВАС = 40° (? не очень понятно) (как вертикальные углы)
∠ВСА = 180° - 65° (?) = 115° (как смежные)
∠АВС =180° - 115° -40° = 25°
Рис.6
т.к. АВ=ВС по условию, то △ АВС - равнобедренный, а значит,
∠ВСА = ∠ВАС = = (180° - 30°)/2 = 75°
(непонятно ∠АВС = 30° или половина угла = 30°. Здесь решение для ∠АВС = 30°)
Рис.7
∠ВСА = 180° - (70° + 40°) = 70°
Т.к. АВ || ВС, то накрест лежащие углы равны, т.е.
∠АВС = ∠ВСD = 70°
Из равенств видно,что ∠АВС = ∠ВСА = 70°, следовательно,
∠А = 180° - 2*70° = 180° - 140° = 40°
∠АВС = ∠ВСА = 70°,